Math 55 Quiz 3 DIS 105

Name: \qquad 14 Feb 2022

1. Prove or disprove each of the following statements:
(a) The function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=x+1$ is onto. [3 points]
(b) If f is an injective function from A to B, and S and T are subsets of B, then $f^{-1}(S \cap$ $T)=f^{-1}(S) \cap f^{-1}(T)$. [4 points]
(c) The set of positive integers which have remainder 1 when divided by 3 is countable. [3 points]
(a) This is false. We claim that $0 \in \mathbb{N}$ is not mapped to by any element of \mathbb{N} :

Suppose otherwise, then $f(x)=x+1=0$ for some $x \in \mathbb{N}$. But then we must have $x=-1$ and so x does not lie in \mathbb{N}; contradiction.
(b) This is true.

Suppose $x \in f^{-1}(S \cap T)$, then $f(x) \in S \cap T$, so $f(x) \in S$ and $f(x) \in T$. This implies that $y=f(x) \in f(S)$ and $y=f(x) \in f(T)$, so $y \in f(S) \cap f(T)$. Hence $f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T)$.
Conversely, suppose $x \in f^{-1}(S) \cap f^{-1}(T)$, then $x \in f^{-1}(S)$ and $x \in f^{-1}(T)$. $x \in$ $f^{-1}(S)$ implies that $f(x) \in S$, and $x \in f^{-1}(T)$ implies that $f(x) \in T$, so $f(x) \in S \cap T$, hence $x \in f^{-1}(S \cap T)$. Hence $f^{-1}(S) \cap f^{-1}(T) \subseteq f^{-1}(S \cap T)$.
Hence $f^{-1}(S \cap T)=f^{-1}(S) \cap f^{-1}(T)$
(c) This is true. Let S be the set of positive integers which have remainder 1 when divided by 3 . We define a function $f: \mathbb{N} \rightarrow S$ by $f(n)=3 n+1$, and we claim that f is surjective:
For any $k \in S$, since k has remainder 1 when divided by $3, k=3 n+1$ for some $n \in \mathbb{Z}$. $n \geq 0$ or else $k=3 n+1 \leq 3(-1)+1=-2$, so $n \in \mathbb{N}$. Hence $f(n)=k$.

