Math 55 Quiz 3 DIS 105

Name: ____

14 Feb 2022

- 1. Prove or disprove each of the following statements:
 - (a) The function $f: \mathbb{N} \to \mathbb{N}$ defined by f(x) = x + 1 is onto. [3 points]
 - (b) If f is an injective function from A to B, and S and T are subsets of B, then $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$. [4 points]
 - (c) The set of positive integers which have remainder 1 when divided by 3 is countable. [3 points]
 - (a) This is false. We claim that $0 \in \mathbb{N}$ is not mapped to by any element of \mathbb{N} : Suppose otherwise, then f(x) = x + 1 = 0 for some $x \in \mathbb{N}$. But then we must have x = -1 and so x does not lie in \mathbb{N} ; contradiction.
 - (b) This is true.

Suppose $x \in f^{-1}(S \cap T)$, then $f(x) \in S \cap T$, so $f(x) \in S$ and $f(x) \in T$. This implies that $y = f(x) \in f(S)$ and $y = f(x) \in f(T)$, so $y \in f(S) \cap f(T)$. Hence $f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T)$. Conversely, suppose $x \in f^{-1}(S) \cap f^{-1}(T)$, then $x \in f^{-1}(S)$ and $x \in f^{-1}(T)$. $x \in f^{-1}(S)$ implies that $f(x) \in S$, and $x \in f^{-1}(T)$ implies that $f(x) \in T$, so $f(x) \in S \cap T$, hence $x \in f^{-1}(S \cap T)$. Hence $f^{-1}(S) \cap f^{-1}(T) \subseteq f^{-1}(S \cap T)$. Hence $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$

(c) This is true. Let S be the set of positive integers which have remainder 1 when divided by 3. We define a function $f : \mathbb{N} \to S$ by f(n) = 3n + 1, and we claim that f is surjective:

For any $k \in S$, since k has remainder 1 when divided by 3, k = 3n + 1 for some $n \in \mathbb{Z}$. $n \ge 0$ or else $k = 3n + 1 \le 3(-1) + 1 = -2$, so $n \in \mathbb{N}$. Hence f(n) = k.